Quantitative Analysis of Negation in Two Cree Corpora

Fiona Wilson
University of Toronto
October 24th, 2020
52nd Algonquian Conference

Background

Varieties of Cree

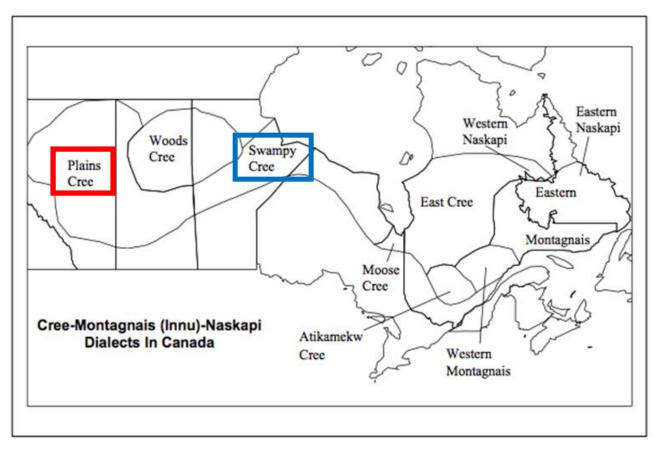


Image from Junker et. al, 2012

Structure of negation in Cree

moona ohci-nisitohtaatowak.

NEG COMPL-understand.IND

'They did not understand each other.' (Scott et al. 1995, p. 12)

kiiy-ayamihikowak, **eekaa** maaka ee-waapamaacik.

PAST-speak.IND NEG but COMPL-see.CONJ

'They were spoken to, and still they didn't see him.'

(Scott et al. 1995, p. 8)

Cree Grammar: Inflectional Order

• Plains Cree:

- nimaaton1s.cry.val.indep'l cry'
- ee-maatoyaan COMPL-cry.VAI.CONJ.1s 'As I am crying'

Muskeg Cree:

- nimaaton1s.cry.VAI.INDEP'I cry'
- ee-maatoyaan SUB-cry.VAI.CONJ.1s 'As I am crying'

Cree Grammar: Clause type

Plains

```
    <u>ee-maayimahcihot</u> ooma awa eekosi aahkosiwikamikohk niwii-itohtahaaw.
    COMP-feel.bad.VAI.CONJ.3s FOCUS this so hospital.LOC 1s.intent-take.VTA.INDEP.1-3
    'This one is feeling ill so I am taking him/her to the hospital' (main clause) (Okimaasis 2004, 276)
```

```
    aahkosiwikamikohk awa niwii-itohtahaaw <u>ayisk ee-maayimahcihot</u>.
    hospital.loc this 1s.intend-take.vta.indep.1-3 because comp-feel.bad.vai.conj.3s
    'I am taking this one to the hospital because s/he is feeling ill' (subordinate clause) (Okimaasis 2004, 276)
```

Muskeg

kii-miicisow. kii-takoshinaawaaw.
 PAST-eat.VAI.INDEP.3s PAST-arrive.VAI.INDEP.2p (main clause + main clause)
 'S/he was eating. You (pl.) arrived.'

kii-miicisow kaa-takoshiniyeek.

PAST-eat.VAI.INDEP.3s PAST-arrive.VAI.CONJ.2p

(main clause + subordinate clause)

'S/he was eating while you arrived.' (Ellis 2004, p. 8)

Cree Grammar: Reality status

Plains Cree

• Marks irrealis verbs with a preverb ka-, or the subjunctive ending -i

```
nikii-kweecimaaw Nettie ka-pee-itohteet.
ni- kii- kweecim -aa -w Nettie ka- pee- itohtee -t
1- PREV- ask.VTA DIR -3 Nettie IRR- come- go.VAI -3
'I asked Nettie to come." (Cook 2014, c2p16)
```

Muskeg Cree

• Reality status can be expressed using a combination of factors (mood, order, etc.), as well as the irrealis preverb.

```
kisaaspin waapamakee, n'ka-miinaaw 1sg.fut-give.to.s.o.vta.indep.ind.neut.1-3 (If I see him, I shall give it to him.' (CONJ SUBJUNCTIVE — real) (Ellis 2004, p. 416) kisaaspin waapamak, n'ka-miinaahtay 1sg.fut-give.to.s.o.vta.indep.ind.pret.1-3 (If I were to see him, I would give it to him.' (CONJ INDICATIVE— unreal) (Ellis 2004, p. 416)
```

Hypotheses about what impacts Negation in Plains Cree

- Inflectional order
 - ekaa with conjunct and imperative; nama/namooya with independent
 - Bloomfield 1926; Wolfart 1973; Okimaasis 2018
- Clause type
 - ekaa with subordinate; nama/namooya with main
 - Reinholtz & Wolfart 1996
- Clause type & reality status
 - ekaa with embedded; namooya with matrix
 - Also: ekaa with irrealis
 - Cook 2014
- *Clause type & veridicality
 - ekaa in subordinate; nama in main
 - Also: ekaa in non-veridical
 - Déchaine & Wolfart 2017

Hypotheses about what impacts negation in Muskeg Cree

- Inflectional order
 - ekaa with conjunct (and imperative); moona with independent (and in isolation)
 - Ellis 2000, 2004, 2016

Research questions

Plains Cree

 Is the pattern of negation consistent with any of the previously outlined hypotheses?

Muskeg Cree

- Is the pattern of negation consistent with the previous hypothesis for the dialect?
- If not:
 - Is the pattern of negation consistent with any of the hypotheses proposed for Plains Cree?
 - Is the pattern of negation consistent with the pattern observed for Plains Cree?

Methods

The corpora

- Collection methods
 - Negative tokens extracted from bilingual Cree-English texts
 - Natural speech data elicited from Cree native speakers
- Structure of the Plains Cree corpus
 - 1037 negative tokens (622 coded)
 - Year of birth from 1896 1972
 - 26 unique speakers represented (~80% of tokens by women)
- Structure of the Muskeg Cree corpus
 - 349 negative tokens (260 coded)
 - Year of birth from 1895 1962
 - 5 unique speaker represented (<1% of tokens by women)

Variable rules analysis

- Method from Variationist Sociolinguistics
- Perspective:
 - Variation is a healthy and inherent part of language
 - Not error or lack of knowledge
 - Variation should be investigated and understood
 - Not ignored or 'smoothed away' to make analysis simpler
- Most commonly used:
 - On widely-spoken, well-studied languages (especially English)
 - On big corpora of naturalistic speech

Variable rules analysis

- Logistic regression
 - Attempting to model the relationship between a binary response variable (form of the negator) using one or more predictors (clause type, reality status, order, etc.) and the possible interaction of predictors.
- How to interpret the model:
 - AICc: trade-off between fit and complexity of model (lower AIC = better fit)
 - R2: proportion of variation explained by model (higher R2 = more variation explained)
 - Factor weight: measurement of how the factor influences the probability of choosing the application value (values 0 0.49 disfavour, and 0.51 1 favour)

Results

Predictions:

- The best model gives support to the hypothesis
- For instance:
 - If inflectional order is 100% responsible for the form of the negator, a model with inflectional order alone should be best
 - If clause type + reality status is responsible, a model with those predictors (and interaction) should be best

Plains Cree Results

Hypothesis 1: Inflectional order alone

Analysis of negation (application value = eekaa): Inflectional order with Speaker as a random effect

Input: 0.0629			N = 622		
Factor	logodds	FW	Proportion	N	
Inflectional order $(p < 0.00001)$					
Conjunct	2.164	.90	38.1	265	
Independent	-2.164	.10	1.1	357	
Range		80			
Model: intercept = -	2.701, df = 3, AICc =	383.075, R ² fixed	=0.504		

Hypothesis 2: Clause type alone

Analysis of negation (application value = eekaa): Clause type with Speaker as a random effect

Input: 0.138			N = 622		
Factor	logodds	FW	Proportion	N	
Clause type $(p < 0.00001)$					
Subordinate	2.261	.91	55.8	163	
Main	-2.261	.09	3.1	459	
Range		82			
Model: intercept = -	1.829, df = 3, AICc =	324.902, R ² fixed	= 0.41		

Hypothesis 3: Clause type & reality status*

Analysis of negation (application value = eekaa): Clause type and reality status with Speaker as a random effect

Input: 0.176			N = 622	
Factor	logodds	FW	Proportion	N
Clause type $(p < 0)$.00001)			
Subordinate	2.188	.90	55.8	163
Main	-2.188	.10	3.1	459
Range		80		
Reality status (p <	0.02)			
Irrealis	0.475	.62	44.7	76
Realis	-0.475	.38	13.0	546
Range		24		
Model: intercept =	-1.543, df = 4, AICc =	320.524, R ² fixed	= 0.42	

Reality status alone

Analysis of negation (application value = eekaa): Reality status with Speaker as a random effect

Input: 0.241			N = 622	
Factor	logodds	FW	Proportion	N
Reality status (p	< 0.00001)			
Irrealis	0.905	.71	44.7	76
Realis	-0.905	.29	13.0	546
Range		62		

Summary

- Inflectional order
 - Highly significant
 - Very strong effect
 - Conjunct favours eekaa; Independent disfavours eekaa
- Clause type
 - Highly significant
 - Very strong effect
 - Subordinate favours eekaa; Main disfavours eekaa
- Reality status
 - Highly significant
 - Strong effect
 - Irrealis favours eekaa; Realis disfavours eekaa

Comparison of the models

Remember:

Lower AICc = better fit

	Inflectional Order		Clause Type + Reality Status
AICc	383.075	324.902	320.524
R ₂	0.50	0.41	0.42

Muskeg Cree Results

Hypothesis 1: Inflectional order alone

Analysis of negation (application value = eekaa): Inflectional order

Input: <.001			N = 260		
Factor	logodds	FW	Proportion	N	
Inflectional order $(p < 0.00001)$					
Conjunct	11.909	>.999	90.5	84	
Independent	-11.909	<.001	0.0	176	
Range		99.8			
Model: intercept = -9.657 , df = 2, AICc = 56.881 , $R^2 = 0.97$					

Hypothesis 2: Clause type alone

Analysis of negation (application value = eekaa): Clause type

Input: < .001		N = 260			
Factor	logodds	FW	Proportion	N	
Clause type $(p < 0.00001)$					
Subordinate	11.206	>.999	86.4	88	
Main	-11.206	<.001	0.0	172	
Range		99.8			
Model: intercept =	-9.36 , df = 2, AICc = $^{\circ}$	$74.149, R^2 = 0.97$			

Hypothesis 3: Clause type & reality status*

Analysis of negation (application value = eekaa): Clause type & reality status

Input: < .001			60	
Factor	logodds	FW	Proportion	N
Clause type				
Subordinate	12.044	>.999	86.4	88
Main	-12.044	< .001	0.0	172
Range		99.8		
Reality status				
Irrealis	-0.709	0.33	45.7	70
Realis	0.709	0.67	23.2	190
Range		34		
Model: intercept = -	-10.067, df = 3, AICc	$= 71.563, R^2 = 0.98$		

Reality status alone

Analysis of negation (application value = eekaa): Reality status

Factor	1 11			
1 actor	logodds	FW	Proportion	N
Reality status ($p < 0.00$	001)			
Irrealis	0.514	0.63	45.7	70
Realis	-0.514	0.37	23.2	190
Range		26		

Summary

- Inflectional Order
 - Highly significant
 - Very strong effect (almost categorical)
 - Conjunct favours eekaa; Independent disfavours eekaa
- Clause Type
 - Highly significant
 - Very strong effect (almost categorical)
 - Subordinate favours eekaa; Main disfavours eekaa
- Reality Status
 - Highly significant
 - Weak effect
 - Interacts with Clause Type
 - Irrealis favours eekaa; Realis disfavours eekaa

Comparison of the models

Remember:

Lower AICc = better fit

	Inflectional Order	Clause Type	Clause Type & Reality Status
AICc	56.881	74.149	*71.563
R ₂	0.97	0.97	*0.98

Concerns about the Muskeg results

Statistical

- (Near)-categorical factors
- Collinearity of some factors
- Unmodelled interactions
- Size of dataset
- Inability to run Speaker as a random effect
- More generally
 - Representativeness of the current dataset

Conclusions

Plains Cree

- Which (if any) hypothesis does the Plains Cree data support?
 - Hypothesis 1: Inflectional order alone
 - Hypothesis 2: Clause type alone
- Hypothesis 3: Clause type & reality status combined
- Of these:
 - The model of Hypothesis 3 performs best

Muskeg Cree

- Which hypothesis does the Muskeg Cree data support?
- Hypothesis 1: Inflectional order alone
 - (proposed for this dialect)
 - Hypothesis 2: Clause type alone
 - Hypothesis 3: Clause type & reality status combined
 - Of these:
 - The model of Hypothesis 1 performs best
 - The Muskeg Cree data is <u>not</u> patterning with the Plains Cree data

Summary

 What does this tell us about negation in these two dialects more generally?

• Plains Cree:

- Both Clause type and Reality status appear to be playing a role
- Moderate r2 value suggests more may be needed to fully explain the pattern

Muskeg Cree

- Inflectional order alone is explaining the current dataset very well
- Reality status does seem to be a significant factor as well
- Concerns about generalizability

On the use of variable rules analysis

- Variable rules analysis can provide quantitative support for hypotheses about negation in Cree
 - The value of using everything in the toolbox
- Potentially very useful when there are competing hypotheses ascribing variation to two very similar factors
 - i.e. Muskeg Inflectional order vs. Clause type
- Focus on widely-spoken languages (esp. Indo-European)
 - Partly due to limitations of the method (e.g. sample size)
- How does the data a method is designed for shape development?
- How generalizable are results if aren't replicated across language families?

Future possibilities

Plains Cree

- Running models that allow multiple levels for the response variable
 - Testing relationship between other negative particles
- Permitting the data to have random slopes based on Speaker
 - Testing Guy 1980, rather than assuming

Muskeg

- Incorporating more naturalistic data
 - Other sources, or inclusion of more tokens from the set
- Possibly incorporating elicitation materials
 - Problem of assumptions
- Looking at other factors and other response variables

References

- Ahenakew, A. (2000). Âh-âyîtaw isi ê-kî-kiskêyihtahkik maskihkiy = They knew both sides of medicine: Cree tales of curing and cursing. H. C. Wolfart & F. Ahenakew (eds.). Winnipeg: University of Manitoba Press.
- Bear, G. et al. (1992). *Kôhkominawak otâcimowiniwâwa* = Our grandmothers' lives, as told in their own words. H. C. Wolfart & F. Ahenakew (eds.). Saskatoon: Fifth House.
- Beardy, L. (1988). *Pisiskiwak kâ-pîkiskwêcik = Talking Animals*. H. C. Wolfart (ed.). Winnipeg: Algonquian and Iroquoian Linguistics.
- Bloomfield, L. (1926). The Plains Cree Language. *Congrès International des Américanistes 22*(2): 427-431.
- Clarke, S. (2009). Sociolinguistic stratification. *Variation in indigenous minority languages, 25,* 109.
- Cook, C. (2014). The clause-typing system of Plains Cree: indexicality, anaphoricity, and contrast. Oxford: Oxford University Press.
- Dahlstrom, A. (1991). Plains Cree morphosyntax. New York: Garland Publishing.
- Déchaine, R.M., & H.C. Wolfart. (2017). What Plains Cree teaches us about negation. Presented at the 49th Algonquian Conference. Montréal.
- Déchaine, R.M., M. Dufresne & C. Reinholtz. (2018). (IR)REALIS morphology and clause-typing in the Cree dialect continuum. Presentation at MoMOT3, University of Toronto, November 16.
- Drapeau, L. (1986). Entre le rêve et la réalité: le mode subjectif en montagnais. In Cowan, W. (ed), *Actes du dix-septième congrès des algonquianistes*. Ottawa: Carleton University. pp. 101-120
- Drapeau, L., & Lambert-Brétière, R. (2012). Insubordination in Innu. In *Papers of the 44th Algonquian Conference*.
- Elliot, J. R. (2000). Realis and irrealis: Forms and concepts of the grammaticalisation of reality. Linguistic Typology 4:55-90.

References

- Ellis, C. D. (2016). Spoken Cree: West Coast of James Bay (Volume 3). Edmonton: University of Alberta Press.
- Ellis, C. D. (2004). Spoken Cree: West Coast of James Bay (Volume 2). Edmonton: University of Alberta Press.
- Ellis, C. D. (2000). Spoken Cree: West Coast of James Bay (Volume 1). Edmonton: University of Alberta Press.
- Kâ-Nîpitêhtêw, J. (1998). Ana kâ-pimwêwêhahk okakêskihkêmowina = The counselling speeches of Jim Kâ-Nîpitêhtêw. H. C. Wolfart & F. Ahenakew (eds.). Winnipeg: University of Manitoba Press.
- MacKenzie, M. E. (1992). Negative Markers in East Cree and Montagnais. *Algonquian Papers-Archive, 23*.
- Okimaasis, J. L. (2018). *Cree, language of the Plains = Ne:hiyawe:win paskwa:wi-pi:kiskwe:win*. Regina: Canadian Plains Research Center.
- Reinholtz, C., & H.C. Wolfart. (1996). Sketch of Cree, an Algonquian language. *Handbook of North American Indians*, 17, 390-439.
- Scott, S. et al. (1995). Âtalôhkâna nêsta tipâcimôwina = Cree Legends and Narratives: From the West Coast of James Bay. C. D. Ellis (ed.). Winnipeg: University of Manitoba Press.
- Tagliamonte, S. (2012). Variationist Sociolinguistics: Change, observation, interpretation. Malden, MA: Wiley-Blackwell.
- Vandall, P, & J. Douquette. (1987). Wâskahikaniwiyiniw-âcimowina = Stories of the House People. F. Ahenakew (ed.). Winnipeg: University of Manitoba Press.
- Whitecalf, S. (1993). Kinêhiyâwiwininaw nêhiyawêwin = The Cree language is our identity: the La Ronge lectures of Sarah Whitecalf. H. C. Wolfart & F. Ahenakew (eds.). Winnipeg: University of Manitoba Press.
- Wolfart, H. C. (1973). Plains Cree: A Grammatical Study. *American Philosophical Society Transactions*, 63(5).
- Wolfart, H. C. (1996). Sketch of Cree, an Algonquian language. Handbook of North American Indians, 17, 390-439.
- Wolvengrey, A. (ed.) (2007). Wawiyatâcimowinisa = Funny Little Stories. University of Regina Press.

Acknowledgements

- I wish to thank the members of my thesis committee: Suzi Lima, Brenda Wastasecoot and Will Oxford.
- I also wish to thank Ken Paupanekis, Joyce Noonen, Lorraine James, Janice Rots-Bone, & Grace Schedler.
- Thanks to the members of my Generals Paper committee: Sali Tagliamonte, Alana Johns, and Derek Denis.
- Thanks also to Nicholas Welch, Chris Harvey, Heather Stephens, and Ilia Nicoll for their comments and suggestions.
- This research was supported by the Social Sciences and Humanities Research Council of Canada (#752-2019-2449).

Thank you!